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PREFACE

This report summarizes the work performed by Applied Research

Associates on Task 3 of Contract DNA 001-84-C-0125. This task involved the

analysis and modificdtion of the prediction procedures for outrunning

ground shock.
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CONVERSION TABLE

PERTINENT CONVERSION FACTORS- -
SI to U.S. CUSTOMARY UNITS OF MEASUREMENT

Parameter To Convert From To Multipl1 By

Length Meters (in Feet (ft) 3.28

Velocity Meter/Second (mis) Feet/Second (ft/s) 3.28 a

Density Kilograms/Cubic Meter Pounds/Cubic Feet 62.4 x 1-
(kg/rn3) (pcf)

Pressure Mega Pascals (MPa) Pounds/Square Inch 145
or Stress (psi)

*Impulse Mega Pascals Seconds Pounds/Square Inch-s 145
(Mpa- s) (psi-s)
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SECTION 1

INTRODUCTION

One of the major recommendations of the President's Commission on

the Modernization of Strategic Forces (Ref. 1) was the development of a

land-mobile, small missile. An outgrowth of this recommendation was the

hard mobile launcher concept. Because this is a low overpressure threat, m

the need for an accurate prediction procedure for the outrunning ground

shock wave has increased. The outrunning wave, as defined in this report,

is the low frequency ground motion that arrives before the airblast. This

wave may be due to the energy coupled at ground zero or to the upstream

-" airblast. The objective of this report is to evaluate the accuracy of

existing prediction methods for the outrunning waveform and, if necessary,

propose a new prediction method.

In the past, the prediction of ground motions induced by High

Explosive (HE) and Nuclear Explosive (NE) experiments has been the subject

of extensive research. Such ground motions can be characterized as

follows: 1) airblast-induced, 2) direct-induced, or 3) upstream-induced.

Airblast-induced motions are due to the local airblast at the point of

interest. Direct-induced motions result from energy coupled at ground

zero. Upstream-induced motions are caused by the upstream airblast.

Depending upon explosive yield, height-of-burst (HOB), and geology,

ground disturbances may arrive at the point of interest prior to the

airblast (i.e., "outrun" the airblast). These disturbances are

direct-induced or upstream-induced in nature. At low yields and deep

surface layers, outrunning occurs when the airblast velocity falls below

the compressional wave speed of the surface layer. At higher yields, or

shallow surface layers, faster underlying layers transmit the ground

shock. In these cases, outrinning can occur at relatively high

overpressures.

Outrunning in the first layer is shown in Figure 1. As seen in this

figure, the outrunning region is subdivided into the transeismic and

subseismic regions. In the transeismic region, the P-wave velocity is

greater than the airblast velocity, which in turn exceeds the S-wave

velocity, i.e.,

A 7
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Cs < U < Cp

where:

Cp = P-wave velocity
U= airblast velocity
Cs = S-wave velocity

In the subseismic region, the airblast velocity is less than the S-wave

velocity also, i.e.,

U < C < C
5 p

Outrunning due to the refraction of energy through a faster,

underlying zone is shown in Figure 2. Generally, the refracted P-wave

generated by the critically incident P-wave travels parallel to the layer

interface at the velocity of the lower layer. This wave is the source of

head waves which propagate into the surface layer. Head waves due to the

energy at the origin are the primary source of the outrunning seen in data.

Several methods exist for the prediction of the ground shock induced

by explosions. Airblast-induced ground motions are predicted with -.

reasonable confidence using finite difference and finite element computer

codes. Upstream-induced ground motions, which arrive after the airblast,

can be predicted using semi-empirical methods (Ref. 2). Several attempts

have been made in the past for the prediction of the outrunning motions.

The objective of this report is to investigate the methods produced by

such attempts and propose a new method for the prediction of the

outrunning wave.

The existing outrunning models are investigated in Section II of this

report. The development of the new outrunning prediction procedure will

be discussed in Section 3. Section 4 lists the conclusions reached in

this work.

8
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SECTION 2

PREVIOUS OUTRUNNING MODELS

Research has been conducted in the past for the theoretical or

empirical prediction of the outrunning wave. Four of the methods produced

are discussed below.

1) A well-documented method for predicting the entire waveform

in the outrunning region (outrunning and upstream-induced that

arrive after the airblast) was developed by Sauer (Ref. 3). In

this method, a characteristic waveform for the vertical motion

was developed using ground motion data obtained from about a

dozen surface and above-ground nuclear tests. The data indicated

that the period of oscillation increases with range. Thus, a

characteristic time, T2, was introduced as a scaling factor to

time. T2 is a function of range and is defined as follows:

T2 (msec) = 100 + 0.82 AR (m) (1)

where:

AR difference between the range of interest and the range

at which the first outrunning occurs.

The vertical velocity was normalized with respect to the peak

velocity of the waveform (Fig. 3).

Plots from available data provided by DIRECT COURSE, MIXED

COMPANY, MILL RACE and other experiments that will be discussed "e-.,

in the next section, indicated that the scaling factors used by

Sauer do not collapse the HE data when very different HOBs, ....:

yields, and geologies are used. For example, in Figure 4 the

curve developed by Sauer is shown with the data from DIRECT

COURSE and MIXED COMPANY at the ranges of 466 m and 197m

respectively. (The data shown includes only the outrunning

portion of the waveform.) As seen, the magnitudes of the

outrunning wave are reasonably approximated on the first cycle

and overestimated on the second. In addition, the frequency of

the MIXED COMPANY wave has been overestimated.
2) A thorough review on the work conducted in the past for the

prediction of the outrunning ground motion can be found in

Higgins, et al (Ref. 4). Most of this work includes the later

time motions (motions that occur after the airblast). A summary

10
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of this work shows the different attempts made in the past toward

an understanding of the motions in the outrunning region. A

review of several closed form solutions, numerical calculations,

and empirical analyses, and the conclusions reached by such

works, are included and briefly discussed in this reference.

The empirical analysis developed in Reference 4 involved a

characteristic wave of the entire waveform at the outrunning

region, which was developed with data provided by MIDDLE GUST II

and III and MIXED COMPANY 3. The velocity was normalized by a

value Vv, equal to the peak velocity of the upstream-induced

waveform in the outrunning region. The time was scaled by a 24

value T that is defined as follows:

t- t
T 0tv to0 for vertical

(2)

= tt 0  for horizontal
th - t

where:

t = time after detonation

to = time of arrival

tv = time of occurence of the third upward peak

th = time of occurence of the first upward peak

The scaling factor

tc
T -- (3)val1/3

where:

t = time

= P-wave velocity at a depth below 7.5 m

Va = crater volume

brings the MIDDLE GUST and MIXED COMPANY horizontal velocity data

into good agreement.

13
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Figure 5 shows the data of MIDDLE GUST II, MIXED COMPANY 3

and MILL RACE at distant ranges. As seen in this figure, the
frequency from the experiments used to develop the method is

closely predicted, while the frequency of 14ILL RACE is

underpredicted. In addition, HOB cases can not be included in

this analysis, because a crater volume is used in the scaling.

3) Another method for predicting the total waveform at the

outrunning regions is given by Guros (Ref. 5). By analyzing

three 100-ton-HE experiments, Guros derived a characteristic

waveforn, amplitudes, relations for attenuation with range, time

of arrival and frequencies. He also gave directions for the

prediction of outrunning in dry and wet site geologies. As in

the previous reference, this report also refers to the entire

waveform and does not concentrate on the outrunning part of it.

4) Finally, the method for the prediction of upstream-induced

motions developed by Labreche et al. (Ref. 2) provides an

estimate of outrunning motions. The upstream induced motions are

made up of two components. These are: 1) the body wave, which

travels at P-wave speeds, and 2) the surface wave, which travels

at S-wave speeds. The arrival of both components is calculated

from critical refraction theory using the source as the origin. -

The frequency of the body wave motions is governed by the crater

volume and the surface wave frequency is governed by the shear

properties of the site profile. In general, this method

accurately predicts the arrival time of the outrunning motions.

The frequency and magnitude, however, are not consistently

predicted. This method was developed primarily for use in the

superseismic region and therefore was never thoroughly checked in

the outrunning region. Furthermore, it is limited to surface

bursts and therefore will not allow variations in burst height. ' '

Most of the references cited above concentrate on a limited number of

HE experiments, with the exception of the procedure introduced by Labreche

et al. (Ref. 2), which was developed primarily for use in the superseismic

region, and the procedure introduced by Sauer et al. (Ref. 3), which was

14
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developed for use in the outrunning region. This second procedure will be

used in this report and will be modified using HE data for the prediction

of the outrunning portion of the velocity waveform. In Section 3, the %

development of new scaling factors used in addition to those proposed by
Sauer will be presented. Finally, the characteristic waveform shown in

Figure 3 will be modified using recent HE data. The waveform produced is
general enough to be used for predicting outrunning motions of HE and NE
explosions that vary in burst height, geology, and yield.

161
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SECTION 3

DEVELOPMENT OF A CHARACTERISTIC WAVEFORM ".-Z

The predictior procedure for the outrunning wave proposed by Sauer et

al. (Ref. 3) has been chosen to be modified in this report in order to

collapse a wide range of data. For this purpose, additional scaling

factors were derived for use in conjunction with those proposed by Sauer.

These factors are the velocity, V1, which is the peak velocity of the

first cycle of motion in the outrunning region, and an impedance ratio,

(PCp )rock/(PCp)soil], of the significant layers in the geology. VI

was used instead of Vmax proposed by Sauer, while the impedance ratio

was used to multiply the factor t/T2 (Fig. 3). In this section, the

derivation of these factors as well as the data on which they are based

are discussed.

Several experiments provide a substantial data base on the outrunning

region. Good quality data is provided by DIRECT COURSE (Ref. 6), MILL

RACE (Ref. 7), and MIXED COMPANY (Ref. 8). Other sources of limited data

are Pre-DIRECT COURSE (Ref. 9), MIDDLE GUST II (Ref. 10), Ill (Ref. 11),

and IV (Ref. 12), MISERS BLUFF (Ref. 13), and Pre-DICE THROW (Ref. 14).

This data base includes surface tangent and height of burst explosions, as

well as a variety of geologies and yields.

Major emphasis in the empirical analysis of these data was placed on

the velocity waveform, because the velocity is more easily interpreted

than other motion components. The frequency and magnitude of the waveform

were the two major parameters considered. The airblast-induced motion or

any motion arriving after the airblast was not considered in this analysis.

3.1. Test Site Geologies

DIRECT COURSE was conducted with 600 T of ANFO (equivalent to 500 T

of TNT) exploded at an HOB of 50.6 m. The site geology consisted of

clayey sand and sandy clay. A hard caliche layer existed at a depth of

10.6 m. MILL RACE was a similar experiment exploded tangent to the

surface on the same geology as DIRECT COURSE. The seismic data of this

profile, found in Reference 15, are given in Table 1.

MIXED COMPANY w'as an experiment conducted with 500 T of TNT exploded

tangent to the surface. The site was composed of sandy, clayey silt

overlying an intermixed formation of siltstone, sandstone, mudstone and

.d17
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Table 1. DIRECT COURSE and MILL RACE Seismic Data

(Ref. 15)

H CP Cs

Wti (mis) (m/s) (kg/rn 3)

0 - 0.8 365 245 1600
.8 - 3.5 710 545 1696

3.5 - 10.6 900 494 1696
10.6 - 14.6 1325 640 1712

> 14.6 -003 470 1792

pp

(Mn) (m/S) (m/S) (kg/rn 3 )

0 0- 3 655 393 1920
3 - 122 2286 1493 2160

18



conglomerates. The bedrock consisted of a massive, cross-bedded

sandstone. The seismic data of this profile are given in Table 2 (Ref.
16).

MIDDLE GUST 11 and III were two experiments, each composed of 100 T

of TNT, exploded at an HOB of 4.8 m and at surface tangent, respectively.
The site was formed by a layer of alluvial sandy clay overlying Cretaceous
Pierre shale. A perched water table existed at about 1.2 m. Table 3
contains the seismic data of this site (Ref. 16).

MIDDLE GUST IV consisted of 100 T of TNT detonated at surface
tangent. The site overburden was made up of a very thin layer of clayey

top soil overlying a layer of silty clay shale and finally a competent
clay shale bedrock. This site had adeep water table, unlike that of

MIDDLE GUST II and III. The seismic information is contained in Table 4
* (Ref. 16).

MISERS BLUFF was an experiment consisting of 120 T of ANFO

(equivalent to 100 T of TNT) exploded at surface tangent. The site
profile was composed of wind blown silt, clayey silt, and beds of

alternating sand and sand gravel. The bedrock consisted of conglomerate

p sandstone. The seismic data of this site are found in Table 5 (Ref. 16).
Pre-DICE THROW was an experiment consisting of 100 T of TNT exploded

at surface tangent. The site geology had layers of silty clay, fine and

course silt, and sand with gravel. The seismic data are found on Table 6

(Ref. 16).

3.2. Time of Arrival

The range (or time) at which outrunning first occurs can be found

using the airblast arrival time, and the standard seismic velocities and
layer depths of the site (Ref. 17). Figure 6 shows the relationship

between the times of arrival of the upstream- induced or direct-induced
ground motion and the airblast. The point at which the two curves

intercept is the range (or time) at which outrunning first occurs.

As seen in this graph, the first outrunning is due to upstream

airblast. However, observations from the data indicate that tile time of

arrival of the first outrunning coincides with the arrival of theIcritically refracted P-wave from the origin. This apparent inconsistency

19r



Table 3. MIDDLE GUST II and III Seismic Data

(Ref. 16)

H C5

(mn) (mis) (mis) (kg/rn3)

0 - 2.13 610 122 2082
2.13 - 4.57 1768 183 2082
4.57 - 38 2408 1036 2370

Table 4. MIDDLE GUST IV Seismic Data

(Ref. 16)

H Cp C5

(mn) (m/s) (m/s) (kg/rn3)

0 - 3.0 335 168 2000I3.0 - 7.6 731 260 2160
7.6 - 15.0 19)81 457 2368

20
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'1 Table 5. MISERS BLUFF Seismic Data
(Ref. 16)

H C p CS

(mn) (mis) (mis) (kg/rn3)

0 -1 335 213 1600
6.1 - 12.2 518 260 1760

12.2 - 43 1707 305 1920

Table 6. PRE-DICE THROW Seismic Data
(Ref. 16)

H C C

(Mn) (Mis) (Mis) (kg/rn3)

0 - 2.4 366 168 1600
2.4 - 33 1877 204 1760

33 -366 1981 603 1920

21
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is due to the fact that upstream induced motions are not of sufficient

magnitude to create very strong oscillations and, therefore, they are not

observed in the data. By the time the direct-induced head waves arrive

from the origin, the upstream-induced and the direct-induced waves

superimpose to produce the relatively strong oscillation observed in the

data."_

3.3. Velocity Scaling Factor .'-j

To scale the velocity, V, of the waveform, a value, V1 , equal to

the value of the first peak of the outrunning wave was used. Figures 7

and 8 show the vertical and horizontal relations of this value with range P. .

(scaled to yield) at different depths of several experiments. (The values

at different depths fall within the scatter of the data.) The equations

that describe the two lines are:

VI  2.70(0 6 )R 2 24  for Vertical

(4)

I  1.26(10 7)R 2 3 7  for Horizontal

where R range in (m/MT1 3) and V is given in m/sNE d 1 isgvnnms

3.4. Time Scaling Factor

As seen previously (Fig. 4), the frequencies of the waveforms

provided by DIRECT COURSE and MIXED COMPANY were very different. DIRECT

COURSE was accurately predicted by the curve developed hy Sauer (Ref. 3),

while MIXED COMtPANY was overpredicted. To find the factors that influence

the frequency, parametric studies were performed using the CAGGS computer

code developed by Britt (Ref. 18). The parameters studied were 1) the

depth of the overburden, H, and 2) the impedance ratio between the soil

and the rock (or hard layer). As will be seen, the impedance ratio

influences the frequency considerably. WI
The theory in CAGGS is based on the exact Cagniard elastic

formulation of the wave propagation theory (Ref. 19). The Cagniard

solution was extended by Britt to model the ground shock propagation and

motions produced hy airburst explosions. The air-earth environment was

23
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treated as three elastic layers (air, soil and rock). The explosion was

replaced by a point source in an elastic fluid. The airbiast was

estimated empirically and was used as a source input. The CAGGS solution

includes particle velocity waveforms. An example of such results is shown
in Figure 9, in which the theoretical results are compared to DIRECT

COURSE data at a range of 305 m. As seen in this figure, the comparison

between the data and a closed form solution is good. The problem develops
at large ranges where the elastic solution underestimates the magnitude of P.

the outrunning motions considerably, and fails to estimate the frequency.
S.

CAGGS was used at small ranges for parametric studies to single out the

factors that influence the outrunning wave.

Using CAGGS, the vertical and horizontal velocity of MIXED COMPANY at

a range of 196 m were calculated and shown in Figure 10. As shown in

Table 2, the depth to the rock in the site of this experiment is equal to
3 m. Figure 11 shows the vertical and horizontal velocity of the same

profile when the depth to the rock was changed to 5.8 m. Observation of

these curves reveals that the depth to the rock does not influence the
shape of the horizontal velocity waveform. However, the vertical velocity

shows a dependence to the depth of the softer layer. The shape of the

waveform changed and the frequency was affected. The magnitude of the

-~ first peak in both the vertical and horizontal waves remained unchanged.
However, the factor that seemed to influence considerably both theU

vertical and the horizontal waveforms is the impedance ratio between the

soil and the rock of the site. The impedance of each material was cal-

culated using the density,. n h -aesed ~ of the materi-
al. Figure 10 shows the calculated particle velocity of MIXED COMPANY at

a range of 196 m and a rock velocity of 2286 in/sec (the impedance ratio is

equal to 3.9). Figure 12 shows the velocity waveform of the same
experiment when the P-wave speed of the rock was reduced to 1524 in/sec
(the impedance ratio is equal to 2.88). When the impedance was increased

to 5.78, its influence on the outrunning wave became even more noticeable

(Fig. 13). A considerable change seems to occur in the frequency and

general shape of both the vertical and the horizontal waves.

Consequently, the impedance ratio was used, along with the characteristic

time T2, as a scaling ratio in the derivation of a characteristic wave.

26w

~c c c~c c.. g ~ c~... .. .c. .... . . .~ c .*-.~*--*. *2*.7.



.100

.050

-*0.000

Co]

- 100

CD-.150

-200.000 .100 .200 .300 .400 .500

TIME (SEC)

____DATA

--- .CALCULATION

Fiqure 9. DIRECT COURSE data vs. calculated outrunning
ground motion (range =305 m)

27



TV 1.

F-

CDJv

C)

E

C)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

TIME (SEC)

Fiur 1 . Cacltdvria n orzna.eoiiswt

____-MXE CO. rag496m.eth 27m

imeac0ai .

-r. -

%) -



E'

I-

-JJ

LU
0

I-I

c'j
LU_ _ __ _

TIE(SC

U,

0.000 .001502 .503

cTIME (SEC) ___

JJ



C'Ej

LLJ -

rI4O

03



'.~~~ ~~~ I. ~~~~ '~~~ ~~W ~~~ u-~.. .~ ~w P U . ~ ~ ~ ---- ';.~* :- -...-

%. .. &

Irb

0

_j _

C1i

Lii C'i

'0.00 0.05 0.10 0.15 0.20 0.25 0.30

TIM'E (SEC)

C?"J.

~p. 1.*~E

C,
00

VTJ II

T
00j

0.00 0.05 0.10 0.15 0.20 0.25 0.30

TIME (SEC)

Figure 13. Calculated vertical and horizontal velocities
with CAGGS-MIXED CO., range =196 m, depth 2.7 mn,
impedance ratio =5.78

31



It should be noted here that the largest impedance ratio between the

layers of the site should be used. This could be between the soil and the

rock, the soil and the water table, or two layers of soil. At any layer

interface at which the impedance ratio is calculated, the weighted average
of the properties above this layer must be used.

3.5. Characteristic Wave
Using the new scaling factors, (V1 and the impedance ratio), the

outrunning waveforms from DIRECT COURSE, MILL RACE, MIXED COMPANY, MIDDLE
GUST 11, 111, and IV, MISERS BLUFF, and Pre-DICE THROW were plotted in the

normalized fashion as shown in Figure 14. A characteristic waveform was
then derived by averaging this data. The vertical and horizontal

waveforms that were derived are shown in Figures 15 and 16. .

The characteristic waveform that was derived in this study was
P programmned into the Wave Synthesis Model (WSM) computer code. Several

examples were prepared to show its comparison to data.

Figures 17 through 20 show the vertical and horizontal comparisons of
the data with the calculations performed using WSM. The tests used in
these comparisons are DIRECT COURSE, MILL RACE, MIXED COMPANY, and MIDDLE

GUST II. The ranges at which the comparisons are made are at the

outrunning regions; the depths are all shallow. As seen, both the

magnitudes and the frequencies of these experiments are very closely
predicted. The DIRECT COURSE (Fig. 17) comparison includes the entire
waveform at a range of 466 m. This prediction procedure produced vertical
and horizontal waveforms with an average error of 17 percent in magnitude
and 5 percent in frequency. The other waveforms show the outrunning

component only. MILL RACE (Fig. 18), at the range of 350 m, was predicted
with an average error of 12 percent in magnitude and 12 percent in

frequency. MIXED COMPANY (Fig. 19), at the range of 196 m, was predicted z
with an average error of 23 percent in magnitude and 8 percent in

Ifrequency. Finally, MIDDLE Gust II (Fig. 20), at the range of 107 m, had

an average of 12 percent error in magnitude and 9 percent error in

* frequency in the predicted wave form. (NOTE: The experiments used to
evaluate the procedure were those used to derive it. The procedure should

be evaluated again as new outrunning data becomes available.)

A summary of the proposed prediction procedure is given in Table 7.
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Table 7. Summary of the proposed prediction proceudre
for the outrunning waveform.

1) Time of arrival and duration--Time of arrival of the
outrunning wave is calculated using the standard seismic
velocities and layer depths of the site. In multilayered
sites, it can be found using the following equation:

ta(n) - 2H 1 )I + T AB O

where

ta(n) arrival time of head wave from nth

interface

Hi thickness of the ith layer

Ci = compression wave velocity in the ith layer

Cn+1 compression wave velocity in the (n+l)th
layer

TABO= time of arrival of the airblast at the origin

(for HOB explosions only)

2) Scaling factors--The velocity is scaled with a factor, VI,
equal to the peak velocity of the first cycle in the
outrunning regions. V1 is given in m/sec and is calculated
as follows:

VI=2.70 (106) R-2.24  for vertical velocities

V1=1.26 (107) R-
2.3 7 for horizontal velocities

i
where: R = range of interest in m/MT"/3N

The time is scaled with two factors:

a) a characteristic time, T2, where

T2 (sec) = 100 + 0.82 aR(m)

in which AR is the difference in range between the
point of interest and the point of the first A
outrunning.
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Table 7. Summary of the proposed prediction procedure
for the outrunning waveform (Continued).

b) an impedance ratio,

(pep) rock/(pCp) SOtl

The time scaling factor tf is equal to

t (pC )rockt f = " 2 * ( ~ l o l,

in which t is zero at the time of arrival of the
outrunning wave.

3) Waveform prediction--The waveform is predicted up to the time of
arrival of the airblast. After that point other prediction
procedures can be used. The following equations describe the
waveforms of Figures 15 and 16:

Vertical

VV = VI (1) sin /W25tf for 0 < tf < .525
52 5)

VV = V1 (-1.5) sin - (tf - .525) for .525 < tf < 1.075

V V= v1 (.85) ! n 5 (tf- 1.075) for 1.07< tf < .925

V V1  .85 (f- o
VV  VI (-1.1) sin 0 (tf 1.925 for tf > 1.925

Horizontal

VH = V (1 sin tf for 0 < tf < 0.9

V = V (-I) si (tf- 0.9)fr"> .
H '2 sn(- ) fot5 .

4.4
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SECTION 4

CONCLUSIONS AND RECOMMENDATIONS

4.1. Conclusions ii
By the empirical analysis and the numerical calculation, several

conclusions were reached.

1) First arrivals in the outrunning region are due to head waves

from underlying layers and coincide with the P-wave arrival from

the burst point.

2) The first peaks of the outrunning waves attenuate at a rate

of R-2.24 for vertical and R-2.37 for horizontal waves.

Since they are produced by the headwave generated at the hard
layer, they do not attenuate with depth. The magnitudes of the

first peaks at depth fall within the scatter of the data with

those at surface.

3) Height-of-burst does not influence the outrunning wave

significantly.
4) Depth to the hard layer influences the magnitude and I,;

frequency of the vertical outrunning wave only.
1

5) The impedance ratio between the soil and rock of the site

strongly influences the frequency and magnitude of the vertical

and horizontal outrunning waves.
6) The magnitude and period of the horizontal outrunning wave

are larger than those of the vertical wave

4.2. Recommendations

As data becomes available, it should be used to enrich the data base

of this study and reduce the uncertainties associated with this prediction

procedure.
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